ALPS writes output solutions to the /solution
directory.
All output file names start with the name of the input file used in running ALPS, e.g.
mpirun -np 4 ./src/ALPS filename.in
will produce output files all starting with the string filename.
Value of the dispersion tensor $\mathcal{D}(\omega_{\textrm{r}},\gamma)$ on a defined complex frequency grid.
Solutions to the dispersion relation satisfy $|\mathcal{D}| =0$.
This file is generated from the map_search subroutine in ALPS_fns.f90, and invoked when use_map
=.true. .
The data is ordered in columns as
1. $\omega_r$
2. $\gamma$
3. $\log_{10} |\mathcal{D}|$
4. Re $[|\mathcal{D}|]$
5. Im $[|\mathcal{D}|]$
The &maps_1 namelist in filename.in determines the structure of filename.map.
The range of $\omega_{\textrm{r}}/\Omega_p$ is from omi
to omi
with nr
steps. Logorithmic or linear spacing is selected with loggridw
.
The range of $\gamma_{\textrm{r}}/\Omega_p$ is from gami
to gami
with ni
steps. Logorithmic or linear spacing is selected with loggridg
.
Identified solutions to the dispersion relation $|\mathcal{D}| =0$, calculated using refine_guess in ALPS_fns.f90 when determine_minima
is set to true.
The data is ordered as
1. Solution number
2. $\omega_r$
3. $\gamma$
4. $\log_{10} |\mathcal{D}|$
5. Re $[|\mathcal{D}|]$
6. Im $[|\mathcal{D}|]$
The routine uses either the coarse dispersion tensor map generated from the map_search subroutine (in the case of use_map
= .true.)
or from the input guesses (for use_map
= .false.).
Only the first nroots
solutions will be identified and written to file.
The complex frequencies associated with solution m calculated from om_scan
in the &scan_input_l namelist.
The data is ordered as
1. $k_\perp d_p$
2. $k_\parallel d_p$
3. $\omega_{\textrm{r}}/\Omega_p$
4. $\gamma/\Omega_p$
See the &scan_input namelist description in the Quick Guide for details on determining the kind of wavevector scan.
This same data structure is preserved for the output from om_double_scan
.
The eigenfunctions associated with solution m calculated from om_scan
when eigen
is set to .true.
in the &scan_input_l namelist.
The data is ordered as
1. $k_\perp d_p$
2. $k_\parallel d_p$
3. $\omega_{\textrm{r}}/\Omega_p$
4. $\gamma/\Omega_p$
5. Re $[E_x]$
6. Im $[E_x]$
7. Re $[E_y]$
8. Im $[E_y]$
9. Re $[E_z]$
10. Im $[E_z]$
11. Re $[B_x]$
12. Im $[B_x]$
13. Re $[B_y]$
14. Im $[B_y]$
15. Re $[B_z]$
16. Im $[B_z]$
17. [+6(is-1)] Re $[\delta U_{x,is}]$
18. [+6(is-1)] Im $[\delta U_{x,is}]$
19. [+6(is-1)] Re $[\delta U_{y,is}]$
20. [+6(is-1)] Im $[\delta U_{y,is}]$
21. [+6(is-1)] Re $[\delta U_{z,is}]$
22. [+6(is-1)] Im $[\delta U_{z,is}]$
17. [+6(nspec
)+2(is-1)] Re $[\delta n_{is}]$
18. [+6(nspec
)+2(is-1)] Im $[\delta n_{is}]$
This same data structure is preserved for the output from om_double_scan
.
The heating rates associated with solution m calculated from om_scan
when heating
is set to .true.
in the &scan_input_l namelist.
The data is ordered as
1. $k_\perp d_p$
2. $k_\parallel d_p$
3. $\omega_{\textrm{r}}/\Omega_p$
4. $\gamma/\Omega_p$
5. [+(is-1)] $\gamma_{is}/\omega$
This same data structure is preserved for the output from om_double_scan
.