ALPS Output

ALPS Output

ALPS writes output solutions to the /solution directory.
All output file names start with the name of the input file used in running ALPS, e.g.

mpirun -np 4 ./src/ALPS filename.in

will produce output files all starting with the string filename.

filename.map

Value of the dispersion tensor $\mathcal{D}(\omega_{\textrm{r}},\gamma)$ on a defined complex frequency grid.
Solutions to the dispersion relation satisfy $|\mathcal{D}| =0$. This file is generated from the map_search subroutine in ALPS_fns.f90, and invoked when use_map =.true. .

The data is ordered in columns as
1. $\omega_r$
2. $\gamma$
3. $\log_{10} |\mathcal{D}|$
4. Re $[|\mathcal{D}|]$
5. Im $[|\mathcal{D}|]$

The &maps_1 namelist in filename.in determines the structure of filename.map.
The range of $\omega_{\textrm{r}}/\Omega_p$ is from omi to omi with nr steps. Logorithmic or linear spacing is selected with loggridw. The range of $\gamma_{\textrm{r}}/\Omega_p$ is from gami to gami with ni steps. Logorithmic or linear spacing is selected with loggridg.

filename.roots

Identified solutions to the dispersion relation $|\mathcal{D}| =0$, calculated using refine_guess in ALPS_fns.f90 when determine_minima is set to true.

The data is ordered as
1. Solution number 2. $\omega_r$
3. $\gamma$
4. $\log_{10} |\mathcal{D}|$
5. Re $[|\mathcal{D}|]$
6. Im $[|\mathcal{D}|]$

The routine uses either the coarse dispersion tensor map generated from the map_search subroutine (in the case of use_map = .true.)
or from the input guesses (for use_map = .false.).
Only the first nroots solutions will be identified and written to file.

filename.scan_scan_type_l.root_m

The complex frequencies associated with solution m calculated from om_scan
in the &scan_input_l namelist.

The data is ordered as
1. $k_\perp d_p$ 2. $k_\parallel d_p$
3. $\omega_{\textrm{r}}/\Omega_p$
4. $\gamma/\Omega_p$

See the &scan_input namelist description in the Quick Guide for details on determining the kind of wavevector scan.
This same data structure is preserved for the output from om_double_scan.

filename.eigen_scan_type_l.root_m

The eigenfunctions associated with solution m calculated from om_scan when eigen is set to .true. in the &scan_input_l namelist.

The data is ordered as
1. $k_\perp d_p$ 2. $k_\parallel d_p$
3. $\omega_{\textrm{r}}/\Omega_p$
4. $\gamma/\Omega_p$
5. Re $[E_x]$ 6. Im $[E_x]$ 7. Re $[E_y]$ 8. Im $[E_y]$ 9. Re $[E_z]$ 10. Im $[E_z]$ 11. Re $[B_x]$ 12. Im $[B_x]$ 13. Re $[B_y]$ 14. Im $[B_y]$ 15. Re $[B_z]$ 16. Im $[B_z]$
17. [+6(is-1)] Re $[\delta U_{x,is}]$
18. [+6(is-1)] Im $[\delta U_{x,is}]$
19. [+6(is-1)] Re $[\delta U_{y,is}]$
20. [+6(is-1)] Im $[\delta U_{y,is}]$
21. [+6(is-1)] Re $[\delta U_{z,is}]$
22. [+6(is-1)] Im $[\delta U_{z,is}]$
17. [+6(nspec)+2(is-1)] Re $[\delta n_{is}]$
18. [+6(nspec)+2(is-1)] Im $[\delta n_{is}]$

This same data structure is preserved for the output from om_double_scan.

filename.heat_scan_type_l.root_m

The heating rates associated with solution m calculated from om_scan when heating is set to .true. in the &scan_input_l namelist.

The data is ordered as
1. $k_\perp d_p$ 2. $k_\parallel d_p$
3. $\omega_{\textrm{r}}/\Omega_p$
4. $\gamma/\Omega_p$
5. [+(is-1)] $\gamma_{is}/\omega$

This same data structure is preserved for the output from om_double_scan.