alps_fns Module

This module contains the key numerical functions of ALPS.


Used by

  • module~~alps_fns~~UsedByGraph module~alps_fns alps_fns program~alps alps program~alps->module~alps_fns

Functions

public function disp(om)

This function returns the determinant of the dispersion tensor for a given frequency om.

Arguments

Type IntentOptional Attributes Name
double complex, intent(in) :: om

Complex wave frequency .

Return Value doublecomplex

public function full_integrate(om, nn, mode, found_res)

This function returns the full integral expression according to Eq. (2.9) in the code paper.

Arguments

Type IntentOptional Attributes Name
double complex, intent(in) :: om

Complex wave frequency .

integer, intent(in) :: nn

Order of the Bessel function.

integer, intent(in) :: mode

Index of the entries in the T-tensor of Eq. (2.10).

logical, intent(in) :: found_res

Check whether a resonance is found.

Return Value doublecomplex

private function integrate(om, nn, mode, iparmin, iparmax)

This function performs the integral in Eq. (2.9) of the code paper, but without accounting for the Landau contour integral. It is called by full_integrate.

Arguments

Type IntentOptional Attributes Name
double complex, intent(in) :: om

Complex wave frequency .

integer, intent(in) :: nn

Order of the Bessel function.

integer, intent(in) :: mode

Index of the entries in the T-tensor of Eq. (2.10).

integer :: iparmin

Minimum limit index of parallel momentum for integration.

integer :: iparmax

Maximum limit index of parallel momentum for integration.

Return Value doublecomplex

private function integrate_res(om, nn, mode)

This function performs the integration near resonances as described in Section 3.1 of the code paper. It is only called if resonances are present in or near the integration domain.

Arguments

Type IntentOptional Attributes Name
double complex, intent(in) :: om

Complex wave frequency .

integer, intent(in) :: nn

Order of the Bessel function.

integer, intent(in) :: mode

Index of the entries in the T-tensor of Eq. (2.10).

Return Value doublecomplex

public function funct_g(ppar_real, iperp, om, nn, mode)

This function returns the function from Eq. (3.2) of the code paper.

Arguments

Type IntentOptional Attributes Name
double precision, intent(in) :: ppar_real

Real part of the momentum at which is evaluated.

integer, intent(in) :: iperp

Index of the perpendicular momentum.

double complex, intent(in) :: om

Complex wave frequency .

integer, intent(in) :: nn

Order of the Bessel function.

integer, intent(in) :: mode

Index of the entries in the T-tensor of Eq. (2.10).

Return Value doublecomplex

private function landau_integrate(om, nn, mode)

This function evaluates the Landau contour according to Eqs. (3.8) and (3.9) of the code paper.

Arguments

Type IntentOptional Attributes Name
double complex, intent(in) :: om

Complex wave frequency .

integer, intent(in) :: nn

Order of the Bessel function.

integer, intent(in) :: mode

Index of the entries in the T-tensor of Eq. (2.10).

Return Value doublecomplex

public function int_ee(om)

This function returns the ee term in Eq. (2.9).

Arguments

Type IntentOptional Attributes Name
double complex, intent(in) :: om

Complex wave frequency .

Return Value doublecomplex

private function resU(om, nn, iperp, ipar)

This function evaluates the term proportional to in Eq. (2.9) of the code paper.

Arguments

Type IntentOptional Attributes Name
double complex, intent(in) :: om

Complex wave frequency .

integer, intent(in) :: nn

Order of the Bessel function.

integer, intent(in) :: iperp

Index to loop over perpendicular momentum.

integer, intent(in) :: ipar

Index to loop over parallel momentum.

Return Value doublecomplex

private function int_T(nn, iperp, ipar, mode)

This function returns the T-tensor according to Eq. (2.10) of the code paper.

Arguments

Type IntentOptional Attributes Name
integer, intent(in) :: nn

Order of the Bessel function.

integer, intent(in) :: iperp

Index to loop over perpendicular momentum.

integer, intent(in) :: ipar

Index to loop over parallel momentum.

integer, intent(in) :: mode

Index of the entries in the T-tensor of Eq. (2.10).

Return Value doublecomplex

private function int_T_res(nn, iperp, p_res, mode)

This function returns the T-tensor according to Eq. (2.10) of the code paper for the case in which it is evaluated at the complex resonance momentum.

Arguments

Type IntentOptional Attributes Name
integer, intent(in) :: nn

Order of the Bessel function.

integer, intent(in) :: iperp

Index to loop over perpendicular momentum.

double complex, intent(in) :: p_res

Complex resonance momentum.

integer, intent(in) :: mode

Index of the entries in the T-tensor of Eq. (2.10).

Return Value doublecomplex


Subroutines

public subroutine derivative_f0()

This subroutine calculates the perpendicular and parallel derivatives of the background velocity distribution function f0.

Arguments

None

public subroutine determine_resonances(om, nn, found_res_plus, found_res_minus)

This subroutine determines whether any kinetic resonances are located in the integration domain.

Arguments

Type IntentOptional Attributes Name
double complex, intent(in) :: om

Complex wave frequency .

integer, intent(in) :: nn

Order of Bessel function.

logical, intent(out) :: found_res_plus

Check whether a resonance is found at positive n.

logical, intent(out) :: found_res_minus

Check whether a resonance is found at negative n.

public subroutine secant(om, in)

This subroutine applies the secant method to find the roots of the dispersion tensor.

Arguments

Type IntentOptional Attributes Name
double complex, intent(inout) :: om

Complex wave frequency .

integer, intent(in) :: in

Root number

public subroutine om_scan(ik)

This subroutine scans solutions along a single prescribed path in wavevector space. KGK: This line causes the solution to (occasionally) smoothly transition to unphysical values. Suppressing until we understand the error.

Arguments

Type IntentOptional Attributes Name
integer, intent(in) :: ik

Index of scan number.

public subroutine calc_eigen(omega, electric, magnetic, vmean, ds, Ps, eigen_L, heat_L)

This subroutine calculates the relative electric and magnetic field amplitudes, the relative fluctuations in the density and velocity of all species, and the heating rates of the given solution. It is based on the calc_eigen routine by Greg Howes and Kris Klein.

Arguments

Type IntentOptional Attributes Name
double complex, intent(in) :: omega

Complex wave frequency .

double complex, intent(out), dimension(1:3) :: electric

Relative electric field amplitude (eigenfunction).

double complex, intent(out), dimension(1:3) :: magnetic

Relative magnetic field amplitude (eigenfunction).

double complex, intent(out), dimension(1:3,1:nspec) :: vmean

Relative velocity-fluctuation amplitude (eigenfunction).

double complex, intent(out), dimension(1:nspec) :: ds

Relative density-fluctuation amplitude (eigenfunction).

double precision, intent(out), dimension(1:nspec) :: Ps

Relative heating rate of a given species.

logical, intent(in) :: eigen_L

Check whether eigenfunction calculation is requested.

logical, intent(in) :: heat_L

Check whether eigenfunction calculation is requested.

public subroutine om_double_scan()

This subroutine scans along a prescribed plane in wavevector space to map out in this space. It is required that n_scan=2. KGK: This line causes the solution to (occasionally) smoothly transition to unphysical values. Suppressing until we understand the error.

Arguments

None

public subroutine map_search()

This subroutine calculates the map of the determinant of the dispersion tensor in complex frequency space. check

Read more…

Arguments

None

public subroutine refine_guess()

This subroutine refines the guess at the starting point of the search for solutions to the dispersion relation when scanning. It is also used by map_search to identify the roots on the map.

Arguments

None

public subroutine find_minima(val, numroots, iroots, nroots)

This subroutine identifies the minima of the coarse map grid. It is called by map_search. The code is based on a routine by Greg Howes, 2006.

Arguments

Type IntentOptional Attributes Name
double precision, intent(in), dimension(:,:), pointer :: val

Array of determinant of the dispersion tensor.

integer, intent(in) :: numroots

Number of roots.

integer, intent(out), dimension(1:2,1:numroots) :: iroots

Indices of roots.

integer, intent(out) :: nroots

Number of roots found.

public subroutine determine_nmax()

This subroutine determines the maximum required order of the Bessel functions in Eq. (2.9) of the code paper.

Arguments

None

public subroutine split_processes()

This subroutine defines the tasks for the individual processes. It uses the number of species and the required orders of the Bessel functions to define the splitting across the MPI processes.

Arguments

None

public subroutine determine_bessel_array()

This subroutine determines the array of Bessel functions that is used in the T-tensor of Eq. (2.10) of the code paper.

Arguments

None